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Neural Predictors of Decisions to Cognitively Control
Emotion
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Deciding to control emotional responses is a fundamental means of responding to environmental challenges, but little is known about the
neural mechanisms that predict the outcome of such decisions. We used fMRI to test whether human brain responses during initial
viewing of negative images could be used to predict decisions to regulate affective responses to those images. Our results revealed the
following: (1) decisions to regulate were more frequent in individuals exhibiting higher average levels of activity within the amygdala and
regions of PFC known a priori to be involved in the cognitive control of emotion and (2) within-person expression of a distributed brain
pattern associated with regulating emotion predicted choosing to regulate responses to particular stimuli beyond the predictive value of
stimulus intensity or self-reports of emotion. These results demonstrate the behavioral relevance of variability in brain responses to
aversive stimuli and provide a model that leverages this variability to predict behavior.
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Introduction
Distressing events are unavoidable, but how we respond to them
can be a matter of deliberate choice. Converging evidence sug-
gests that one such choice, the choice to effortfully regulate one’s
negative emotions as opposed to letting them unfold naturally,
serves a critical protective function for wellbeing (Major et al.,
1998; Russo et al., 2012; Sheppes et al., 2014). Although dozens of
imaging studies have focused on the brain systems supporting the
regulation of emotion (Ochsner et al., 2012; Buhle et al., 2014),
none has given participants the choice as to whether they will
regulate their emotions, instead instructing participants when to

regulate versus respond naturally. Therefore, the neural processes
supporting agentic decisions to regulate emotional responses are
unknown.

We sought to build a predictive model of these decisions as a
step toward a neuroscientific understanding of the different ways
individuals respond to aversive life experiences (Russo et al.,
2012; Chang et al., 2015). We began with the idea that specific
brain processes measured by neuroimaging— here, those associ-
ated with the generation and regulation of emotion— could be
used to predict behavioral outcomes that depend on engagement
of the same or similar brain processes (Berkman and Falk, 2013).
This led us to investigte whether brain activity measured during
initial uninstructed encounters with affectively charged events,
when people are reacting and/or engaging regulatory processes in
an uninstructed manner, could predict subsequent choices to
regulate one’s emotional responses to those events when the
choice to regulate is presented explicitly.

We focused on reappraisal, a regulation strategy that entails
thinking differently about a negative stimulus to change how
one feels about it (e.g., looking for a potential bright side or
otherwise taking a new perspective; Ochsner et al., 2012). In-
structed implementation of reappraisal reliably increases activity
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Significance Statement

Everyone experiences stressors, but how we respond to them can range from protracted disability to resilience and growth. One
key process underlying this variability is the agentic decision to exert control over emotional responses. We present an fMRI-based
model predicting decisions to control emotion, finding that activity in brain regions associated with the generation and regulation
of emotion was predictive of which people choose to regulate frequently and a distributed brain pattern associated with regulating
emotion was predictive of which stimuli regulation was chosen. These brain variables predicted future decisions to regulate
emotion beyond what could be predicted from stimulus and self-report variables.
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within a network of regions implicated in cognitive control, in-
cluding ventrolateral PFC (vlPFC), dorsolateral PFC (dlPFC),
and dorsomedial prefrontal PFC (dmPFC), and can influence
(i.e., both upregulate and downregulate) activity in the amygdala,
a subcortical brain region involved in triggering affective re-
sponses (Phelps and Ledoux, 2005; Buhle et al., 2014). Building
on these prior neuroimaging studies, we derived a priori brain
predictors indexing activity triggered by an initial encounter with
a stimulus that could predict subsequent decisions to regulate
one’s emotional responses to that stimulus. Predictors included
activity in the amygdala, thought to reflect emotional reactivity to
the stimulus, activity in vlPFC, dlPFC, and dmPFC thought to
reflect controlled processing and/or regulation of emotional re-
sponses to a stimulus, and a whole-brain pattern reflecting the
global network of activity associated with implementing reap-
praisal to either upregulate or downregulate emotion (Woo et al.,
2015; van Ast et al., 2016).

To address these questions, we first trained participants in
what reappraisal is and how to use it, ensuring that they were
knowledgeable about what a choice to regulate emotion would
entail. Next, we used fMRI to measure brain responses during a
negative image viewing task, when participants were free to think
about the images in any way they chose. After scanning, we pre-
sented these negative images, as well as new ones, and asked
participants to decide whether to regulate their emotions or sim-
ply view the images. This design allowed us to test the hypothesis
that variability in brain responses associated with emotional re-
activity and/or emotion regulation evoked during the negative
image viewing task would be predictive of these subsequent emo-
tion regulation decisions above and beyond stimulus and self-
report variables. This hypothesis was tested at both the level of the
person, investigating whether we could predict the individuals
for whom decisions to regulate would be most likely, and at the
level of the stimulus, investigating whether we could predict the
events for which decisions to regulate would be most likely.

Materials and Methods
Participants
Participants were 20 adults (12 female, 8 male) recruited from the New
York City area (mean age ! 24.6 years, SD ! 4.5) and screened to
confirm that they were right-handed, could read and speak fluently in
English, had normal or corrected-to-normal vision, had never been di-
agnosed with a psychiatric disorder, did not report current depressive
symptoms (i.e., scored "16 on the Center for Epidemiological Studies
Depression scale), and had no conditions that contraindicated MRI. In-
formed consent was obtained according to procedures approved by the
Columbia University Institutional Review Board.

Image acquisition
Data were acquired on a 3 T GE MR750 whole-body scanner with a
32-channel RF head coil. Structural volumes were acquired using a high-
resolution T1-weighted sagittal 3D BRAVO sequence yielding 1 mm 3

isotropic voxel size. Functional volumes were acquired using a T2*-
sensitive EPI sequence with a TR of 2000 ms, a TE of 25 ms, a flip angle of
77°, and an FOV of 19.2 cm consisting of 45 interleaved 3 mm slices
acquired parallel to the AC–PC axis.

Design
Emotion regulation training/practice. Immediately before scanning, all
participants completed experimenter-guided emotion regulation train-
ing modules, which included training in positive reappraisal (i.e., focus-
ing on potential positive aspects or outcomes of a negative situation) and
minimizing reappraisal (i.e., focusing on potential neutral aspects or
outcomes of a negative situation) strategies (McRae et al., 2012). In the
scanner, they applied these strategies within an instructed reappraisal
task (not of direct interest here). Such training and practice in reappraisal

helped to ensure that participants would be knowledgeable about what a
choice to regulate emotion (or not to regulate) would entail.

Scanner negative image viewing task. After the instructed task, partici-
pants were informed that they would be viewing images and were asked
to attend to and rate their responses to these images, but were not in-
structed to think about the images in a particular way (i.e., they were not
instructed to regulate their emotional responses to the images). They
then completed the negative image viewing task, which consisted of two
runs of 10 trials each. The fact that participants had received prior train-
ing in and experience with reappraisal ensured that they knew what
reappraisal was and how to do it and, critically, were free to choose to
engage with stimuli in this task in a way that could reflect agentic deci-
sions to reappraise. Figure 1A shows the trial sequence for this task,
consisting of image viewing period, interstimulus interval, affect rating
period (positive and negative affect ratings appeared in a randomized
order), and intertrial interval. Images (mean normative valence ! 2.49;
mean normative arousal ! 5.71) were selected from the International
Affective Picture System (Lang et al., 2008) and were counterbalanced to
block and randomly assigned to trial number. Images depicted instances
of illness and injury, human and animal waste, acts of aggression, mem-
bers of hate groups, and transportation accidents. For the affect ratings,
we asked participants to base their ratings on how negative and positive
they felt at the end of the image viewing period. Stimuli were presented
with E-Prime version 1.2 software (Psychology Software Tools) and par-
ticipants made behavioral responses on a five-button response pad.

Emotion regulation choice task. Immediately after leaving the scanner,
participants completed a surprise final task in which they viewed in a
random order the 20 negative images presented in the task plus 20 novel
negative images matched on content, arousal, and valence and were
asked to choose whether they would prefer to regulate their emotional
response to the image with reappraisal or simply look at the image with-
out reappraising (Fig. 1). Stimuli were presented with E-Prime version
1.2 software (Psychology Software Tools) and participants made behav-
ioral responses on a keyboard.

Figure 1. Negative image viewing task (A) and emotion regulation choice task (B). Predic-
tive models use brain responses in the negative image viewing task to predict participant choice
behaviors in the emotion regulation choice task.
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fMRI analyses
Preprocessing/GLM. Data were preprocessed with SPM8 (Wellcome De-
partment of Cognitive Neurology, University College–London) and con-
sisted of slice time correction, realignment, coregistration of functional
and structural images, and normalization to the standard Montreal Neu-
rological Institute (MNI) brain by segmentation of the structural image
and applying the parameters from this step during warping. Normalized
images were interpolated to 3 mm 3 voxels and smoothed with a 6 mm
Gaussian kernel.

First-level (individual participant) GLM analyses were implemented
in NeuroElf version 1.0 software (www.neuroelf.net). Stimulus and re-
sponse periods of each trial were modeled as boxcar functions convolved
with the canonical hemodynamic response function. Motion parameters
and a high-pass filter for 128 s were included as regressors of no interest.
All analyses focused on brain signal estimated during the stimulus (image
viewing) period of each trial. Average brain activity during this stimulus
(image viewing) period was defined as the parameter estimate for this
stimulus (image viewing) regressor.

Second-level (group) random-effects analyses were implemented in
NeuroElf version 1.0 software. All brain coordinates are reported in stan-
dard MNI space. For our follow-up whole-brain analysis, significant
voxels were identified using a joint height ( p ! 0.0025) and extent (k !
103) threshold determined by AlphaSim using smoothness parameters
estimated from the residuals of the statistical map (11.7 mm).

Regions of interest. Regions of interest (ROIs) were constructed for
bilateral amygdala, and bilateral vlPFC, dlPFC, and dmPFC, all regions
known to be important for reappraisal (Ochsner et al., 2012). The
amygdala ROI was defined anatomically from the Harvard–Oxford ana-
tomical atlas for 25% probability (L #23, #5, #18; R 23, #4, #18) (5324
mm 3) and three ROIs for bilateral vlPFC (L #51, 21, 9; R 60, 24, 3)
(14121 mm 3), bilateral dlPFC (L 51, 15, 48; R #33, 3, 54) (8235 mm 3),
and a region spanning bilateral dmPFC (9, 30, 39) (8343 mm 3) were
constructed from the results of a meta-analysis from our laboratory of 48
neuroimaging studies of emotion regulation (Buhle et al., 2014). We
defined these prefrontal ROIs directly from the statistical map resulting
from this meta-analysis (provided by the authors) by selecting the clus-
ters of contiguous voxels in vlPFC, dlPFC, and dmPFC that achieved
whole-brain significance in the meta-analytic contrast of reappraisal
greater than natural response (reported in Table 1 of Buhle et al., 2014).

Pattern expression analyses. We conducted pattern expression analyses
to test whether whole-brain responses to individual images could predict
subsequent choices to reappraise those images. Previous studies using
this approach have investigated whether expression of a brain pattern
associated with working memory is modulated by social threat (van Ast
et al., 2016) and if a pattern predictive of physical pain is modulated by
emotion regulation (Woo et al., 2015). Our analyses used the “single-
trial” or “!-series” approach (Koyama et al., 2003) to estimate brain
responses for each trial of the negative image viewing task for each par-
ticipant. We did this by building a GLM that included trial-specific re-
gressors for each image presented in the viewing task in addition to single
regressor for the response period, six regressors for motion parameters,
and a high-pass filter for 128 s.

To calculate the extent to which trial-level ! images expressed the meta-
analytic reappraisal pattern (Buhle et al., 2014), we treated the unthresholded
meta-analytic map as a pattern of weights, reflecting the degree to which each
voxel is reliably associated in the extant literature with implementing reap-
praisal. We then calculated the dot product of the activation image for each
trial of the task for each person (! map) with the unthresholded meta-
analytic map (weight map), yielding a continuous scalar value (! map $
weight map), reflecting the extent to which each trial-level ! map expressed
the weight map pattern. These values were mean centered by participant to
yield a measure of within-subject variation in reappraisal pattern expression
relative to their average.

Person- and trial-level prediction. We used R (www.cran.r-project.org)
to implement person-level Poisson regression models (using glm from
the “stats” package) and multilevel logistic regression models (using
glmer from the “lme4” package) to test whether brain activity in our
ROIs and expression of the whole-brain reappraisal pattern could predict
counts of person-level choice behavior (i.e., the number of times each

person chose to reappraise, from 0 to 40), and trial-level choices (coded
as 0, chose to look naturally without reappraising; 1, chose to reappraise).
Fitted multilevel models included parameters allowing model intercept
and slopes to vary by participant when estimating effect sizes (Barr et al.,
2013) and, for model comparisons, varying slope parameters were in-
cluded where supported by the data (Bates et al., 2015). We implemented
mediation analyses in R (using mediate from the “mediation” package).
Where noted, we adjusted for normative ratings of image intensity (i.e.,
both valence and arousal norms; Lang et al., 2008) and self-report ratings
of negative and positive affect by including these variables as covariates.
All predictor variables were standardized, yielding as measures of effect
size ! coefficients indicating the expected difference in the outcome
variable across a difference of 1 SD in the predictor. (Poisson coefficients
are equal to the log of the incidence rate ratio and logistic coefficients to
the log of the odds ratio, across a one-unit change in the predictor.)

An important consideration in these analyses is that trial-level esti-
mates can be strongly affected by acquisition artifacts that occur during
that trial (e.g., sudden motion, scanner pulse artifacts, etc.). For this
reason, trials with an estimated Mahalanobis distance (across-pattern
expression and ROI variables) %3 SD from the grand mean were ex-
cluded in multilevel models and when calculating participant averages
("2% of all observations).

Estimating model predictive accuracy. To estimate the out-of-sample
predictive accuracy of our linear models, we approximated Bayesian
leave-one-out (LOO) cross-validation using Pareto-smoothed impor-
tance sampling (Vehtari et al., 2016), fitting models with uniform priors
via the Bayesian inference software package Stan (www.mc-stan.org).
Instead of model refitting, as in exact cross-validation, the LOO proce-
dure draws samples from posterior distributions of the model parame-
ters to estimate expected log-likelihood for new data and thus adjust for
overoptimism (i.e., bias) inherent to within-sample measures of model
fit (e.g., the uncorrected log-likelihood). We used this procedure to de-
rive LOO-adjusted deviance values (LOOIC) that can be used to compare
models in terms of their expected out-of-sample predictive accuracy.
This is conceptually similar to comparing Akaike information criterion
(AIC) scores (which also approximate a model’s out-of-sample predic-
tive accuracy), and, to a lesser extent, Bayesian information criterion
scores (which approximate a model’s marginal likelihood—the likeli-
hood of observing the data given the model, marginalized across possible
parameter values), which we examined as well (Gelman et al., 2014). Last,
we applied receiver operating characteristic (ROC) analysis (imple-
mented with the “ROCR” package in R) to assess predictive performance
of our multilevel logistic regression models. In the ROC framework,
model performance is expressed as the area under the curve (AUC) in a
plot of the model’s sensitivity (the proportion of reappraisal choices
correctly predicted as such) against its specificity (the proportion of look
naturally choices correctly predicted as such) across a range of prediction
thresholds. The AUC can be interpreted as the probability that a ran-
domly selected image/trial where reappraisal was actually chosen is pre-
dicted as more likely to be reappraised than a randomly chosen image/
trial where reappraisal was not chosen. Therefore, AUC represents a
threshold-independent metric of model performance, with values from
0.5 (prediction at chance) to 1 (perfect prediction).

Results
Brain responses in amygdala and PFC predict person-to-
person differences in emotion regulation choices
ROI-based prediction of person-level reappraisal
choice frequencies
In an initial analysis, we aggregated our data to the person level (i.e.,
computed choice frequencies and average brain activity estimates for
each person) to run regression models investigating whether person-
to-person differences in activity within our a priori ROIs during
viewing of negative images (when participants were reacting to the
images in an uninstructed manner) could predict the number of
times each participant subsequently explicitly chose to use reap-
praisal in the reappraisal choice task. As shown in Figure 2, A and B,
we found that more frequent reappraisal choices were predicted by
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greater activity in the amygdala (b ! 0.17, 95% CI ! 0.07, 0.27, p "
0.001), as well as vlPFC (b ! 0.14, 95% CI ! 0.05, 0.23, p ! 0.002),
dlPFC (b ! 0.19, 95% CI ! 0.09, 0.28, p " 0.001), and dmPFC (b !
0.24, 95% CI ! 0.15, 0.33, p " 0.001). These relationships held when
estimating them with robust GLMs (via iteratively reweighted least
squares). Each of these relationships also remained nonzero when
adjusting for self-report ratings of positive and negative affect,
amygdala (b ! 0.20, 95% CI ! 0.10, 0.32, p " 0.001), vlPFC (b !
0.10, 95% CI ! 0.01, 0.20, p ! 0.03), dlPFC (b ! 0.16, 95% CI !
0.06, 0.27, p ! 0.001), and dmPFC (b ! 0.23, 95% CI ! 0.13, 0.33,
p " 0.001), indicating that greater responses in these regions during
viewing of negative images predicted emotion regulation choice fre-
quency independent of affective experience while viewing images in
the scanner.

Prediction of decisions for old versus novel images
In the reappraisal choice task, participants made decisions about
whether to regulate responses to 20 old images (that had been
seen previously in the scanner) and 20 new images. Reappraisal
choice frequencies were highly correlated across old and new
images (r ! 0.85, 95% CI ! 0.65, 0.94). The ability of brain
activity during the image-viewing task to predict subsequent re-
appraisal choices was comparable across old and new images for
the amygdala (bold ! 0.15, 95% CI ! 0.01, 0.29, p ! 0.04; bnew !
0.19, 95% CI ! 0.05, 0.33, p ! 0.007; and for the PFC, bold ! 0.22,
95% CI ! 0.09, 0.35, p " 0.001; bnew ! 0.22, 95% CI ! 0.09, 0.34,
p " 0.001). These results suggest that the person-to-person pre-
dictive value of these ROIs was comparable for previously seen
and never before seen images, which together indexed individual
differences in the general tendency to choose to regulate.

Correlation structure of the regions of interest
Next, we inspected the correlation structure of these ROIs, find-
ing that activity in vlPFC, dlPFC, and dmPFC was highly corre-
lated (mean r ! 0.83) and also correlated with activity in the
amygdala (mean r ! 0.67). To reduce model complexity and to
reflect correspondence with a model of regulation in which dif-
ferent prefrontal regions are components of a coordinated system

for cognitively controlling emotion (Ochsner et al., 2012), we
averaged our vlPFC, dlPFC, and dmPFC ROI variables into a
compound prefrontal ROI variable for all subsequent analyses.

Comparing predictive fit of models
A crucial question is whether including our amygdala and pre-
frontal brain variables improves the prediction power of our
models relative to models with only self-report measures of
emotion. To address this question, we compared models with
and without brain predictors in terms of predictive accuracy es-
timated by cross-validation (Gelman et al., 2014; Vehtari et al.,
2016). As shown in Figure 3, a model that included the predictors
for brain activity (i.e., both the compound prefrontal ROI and the
amygdala ROI) showed substantially better predictive fit by LOO
cross-validation (Mfull ! 153.5) than a reduced model including
only self-report affect ratings (Mreduced ! 167.9) and was also
preferred by AIC (Mfull ! 144.6; Mreduced ! 159.8) and BIC
(Mfull ! 149.3; Mreduced ! 162.6) metrics (Fig. 3A). This indicates
that the model with brain predictors was identified as higher in
expected out-of-sample accuracy (by LOO and AIC) and a more
plausible model of the data generation process (by BIC) com-
pared with the model including only self-reports of negative and
positive affect. (Because all participants viewed the same images,
stimulus qualities did not differ from person to person.)

Person-level mediation analysis
We conducted a follow-up mediation analysis to test the evidence
for a causal model whereby the effect of amygdala activity (the x
variable) on subsequent emotion regulation choice frequencies
(the y variable) is transmitted via changes in PFC activity (the
mediator variable). We found a significant total effect of
amygdala activity on reappraisal choice frequencies (c ! 0.17,
95% CI ! 0.07, 0.27, p " 0.001) that was fully mediated by PFC
activity (a*b ! 0.15, 95% CI ! 0.05, 0.30, p " 0.001) such that the
direct effect of amygdala activity on reappraisal choice frequen-
cies dropped to near zero (c& ! 0.02, 95% CI ! #0.12, 0.11,
p ! 0.73) when adjusting for prefrontal activity (Fig. 4). Al-
though these variables were observed (not manipulated), the re-

Figure 2. Scatterplots and GLM fits reflecting predictive relationships between person-to-person variability in brain activity in the negative image viewing task and subsequent reappraisal choice
frequencies, for a priori anatomically defined amygdala (A) and meta-analytically defined dmPFC, dlPFC, and vlPFC bilateral regions of interest (B).
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sults of this mediation analysis are
consistent with a causal model whereby
greater amygdala reactivity elicits greater
recruitment of prefrontal regions, which
in turn leads to and/or reflects more fre-
quent decisions to regulate emotion.

Follow-up whole-brain analysis for
reappraisal choice frequencies
To complement the primary ROI-based
analyses described in the main text, we
conducted a follow-up whole-brain anal-
ysis to identify regions of the brain that
were most strongly correlated with future
emotion regulation decisions at the
person-to-person level. Unlike the ROI
analyses, which were designed to estimate
effect sizes for the predictive relationship
between brain activity and reappraisal
choices for given brain regions, this anal-
ysis was designed to identify any regions
across the whole brain that were highly
correlated with future choice frequencies.
Consistent with the ROI-based analyses,
we found clusters that positively correlated with reappraisal
choice frequency within bilateral vlPFC (L #39, 36, 3; R 57, 36,
12), bilateral dlPFC(L #21, 21, 39; R 42, 18, 33), and bilateral
dmPFC (3, 33, 36), as well as two additional regions: bilateral
precuneus (9, #33, 39) and right anterior temporal lobe (R 33,
21, #33) (Fig. 5).

Expression of a distributed brain pattern associated with
reappraisal predicts stimulus-to-stimulus emotion regulation
choices
Our initial analyses showed that average levels of brain activity in
specific ROIs could predict person-to-person variability in reap-
praisal choices (i.e., whether people will reappraise frequently or
infrequently), but they did not model stimulus-level variability in
reappraisal choices (i.e., whether patterns of brain activity can be
used to predict for which events people are more likely to reap-
praise). To address this question, we ran multilevel logistic re-
gression models including brain activity measured during the
image viewing task as predictors and trial-level decisions to reap-
praise for specific stimuli in the subsequent choice task as the
outcome.

ROI-based prediction of stimulus-level reappraisal choices
We also used multilevel logistic regression to evaluate the predic-
tive value of the amygdala and prefrontal ROI variables. Consis-
tent with the single-level models reported above, considering
only the between-subject component of the ROI variables (i.e.,
average activity within the ROI across all trials for a given per-
son), we found that average activity within the amygdala (b !
0.56, 95% CI ! 0.15, 0.97, p ! 0.007) and prefrontal control
regions (b ! 0.75, 95% CI ! 0.30, 1.19, p ! 0.001) was predictive
of future choices. However, considering only the within-subject
component of these variables (i.e., trial-to-trial deflections from
these overall person averages), there was no trial-by-trial rela-
tionship for the amygdala (b ! #0.06, 95% CI ! #0.49, 0.34,
p ! 0.63), but there was a trend-level positive relationship for the
prefrontal regions (b ! 0.20, 95% CI ! #0.01, 0.42, p ! 0.07).
This suggests that, in contrast to the pattern expression variable,

these ROI variables may be lower in predictive value for trial-to-
trial decisions.

Pattern-based prediction of stimulus-level reappraisal choices
As a more global representation of reappraisal-related brain ac-
tivity occurring while viewing each image, we used trial-by-trial
expression of the meta-analytically derived whole-brain pattern
associated with implementing reappraisal (i.e., the whole-brain
map resulting from the Buhle et al., 2014 meta-analysis).

Using the data from the image-viewing task, we investigated
whether expression of this whole-brain pattern of interest could
prospectively predict decisions to reappraise. We found that the
trial-to-trial differences in pattern expression predicted greater
probability of choosing to regulate emotion (b ! 0.31, 95% CI !
0.07, 0.55, p ! 0.009; Fig. 6). This predictive relationship held
when adjusting for self-report ratings of positive and negative
affect and normative ratings of image valence and arousal
(b ! 0.31, 95% CI ! 0.07, 0.54, p ! 0.01) and also held (actually
increasing in magnitude; b ! 0.59, 95% CI ! 0.29, 0.89, p "
0.001) when additionally adjusting for activity within our indi-
vidual PFC and amygdala ROIs. In this overall model, only the
PFC (b ! 0.61, 95% CI ! 0.18, 1.04, p ! 0.006) independently
predicted choosing to reappraise beyond the predictive capacity
of the pattern expression variable (Fig. 7A).

Comparing predictive fit of models
A full model, including the pattern expression variable, stimulus-
level estimates of activity in the prefrontal and amygdala ROIs,
self-report ratings, and image intensity norms, showed substan-
tially better predictive fit by LOO cross-validation (Mfull ! 492.9)
than a model predicting choices from only self-report affect rat-
ings and normative ratings of image valence and arousal (Mreduced

! 505.4) and was also preferred by AIC (Mfull ! 501.7, Mreduced !
513.0) and BIC (Mfull ! 537.6, Mreduced ! 544.9) metrics. This
indicates that the model including brain predictors was higher in
expected out-of-sample accuracy (by LOOIC and AIC) and a
more plausible model of the data generation process (by BIC)
than the reduced model including only image characteristics and
self-report (Fig. 7B).

Figure 3. Results of person-level predictive models. A, Plot of regression coefficients (with 95% CI) for the full model (model 2)
predicting reappraisal choice frequencies from brain and self-report variables (entered as simultaneous predictors). B, Model
comparison metrics for full model (model 2) and reduced model including only negative affect ratings and positive affect ratings
(model 1). Model fit is summarized by LOOIC, AIC, and BIC scores (i.e., adjusted model deviance, a measure of the relative quality of
the models for these data). A lower number indicates a better fit.
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Next, we used ROC analysis to quantify the absolute predic-
tive performance of our models (i.e., the models’ ability to cor-
rectly predict reappraisal choices vs natural response choices).
Shown in Figure 7C, the model with only normative ratings of
image arousal and valence as predictors had an AUC of 0.56,
corresponding to poor prediction (shown in purple). The model
with normative ratings and participant positive and negative af-
fect ratings collected in the scanner had an AUC of 0.61 (shown in
green). The model with prefrontal and amygdala ROI predictors
in addition to image norms and affect ratings had an AUC of 0.65
(shown in blue). Finally, the model that included expression of
the meta-analytically defined whole-brain reappraisal pattern in
addition to these variables had an AUC of 0.71. At a prediction
threshold of 0.5 (i.e., a predicted probability '0.5 is considered
predicted reappraisal and "0.5 is considered predicted natural
responding), this model showed 70% correct prediction of par-
ticipant choice behaviors.

Discussion
To make contact with translational appli-
cations, neuroimaging studies must go
beyond mapping correlates of experimen-
tally cued regulation to begin construct-
ing neuroscience-informed predictive
models that can forecast which people will
choose to regulate their emotions and for
which events they will choose to do so
(Doré et al., 2016). Here, we provide the
first example of such a model, leveraging
variability in brain responses to negative
images to predict agentic decisions to reg-
ulate emotion.

Two key findings were obtained. First, at
the level of the individual, we found that
greater activity in the amygdala (a region in-
volved in generating emotion) and in
vlPFC, dlPFC, and dmPFC (regions in-
volved in controlling emotion) predicted
more frequently choosing to regulate re-
sponses to emotional events, in general, in-
cluding novel ones. Notably, the predictive

relationship between amygdala activity and more frequent reap-
praisal choices was mediated by increased prefrontal activity, consis-
tent with a model whereby greater amygdala reactivity prompts
greater prefrontal activity, which in turn generates and/or reflects
more frequent decisions to regulate emotion. Notably, we did not see
evidence that negative affect was downregulated within the scanner
task in that higher amygdala responses and higher negative affect
were predictive of regulating emotion more frequently. Second, at
the level of the emotion-eliciting stimulus, we found that expression
of a meta-analytically defined brain pattern associated with imple-
menting reappraisal (Buhle et al., 2014) predicted choosing to regu-
late emotional responses for that stimulus. Overall, a predictive
model that included amygdala activity, PFC activity, and expression
of this distributed brain pattern showed substantially better perfor-
mance than a model using only emotion self-reports and data on the

Figure 4. Greater average amygdala activity in the negative image viewing task predicts subsequently choosing to regulate emotion more frequently and this relationship is mediated by greater
PFC activity during the image-viewing task.

Figure 5. Regions of the brain for which person-to-person variability in activity during the negative image viewing task is most
correlated with subsequent reappraisal choices (whole-brain FEW, p " 0.05).
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normative affective potency of image stimuli, reaching 70% accu-
racy in predicting participant choice behaviors.

Implications for neural models of emotion regulation
Neural models of emotion regulation have previously highlighted
the importance of interacting brain systems for the top-down con-
trol and bottom-up generation of emotion (Ochsner et al., 2012;
Kelley et al., 2015). The results of this study extend these models in
several ways. First, these data indicate that people who show stronger
bottom-up reactivity to affective stimuli (as measured by amygdala
responses) are also more likely to engage prefrontally mediated con-
trol processes, and, ultimately, to choose to regulate emotional re-
sponses to those stimuli. This suggests greater amygdala reactivity
and prefrontal recruitment as neurobiological mechanisms under-
pinning the phenomenon of being motivated to regulate one’s neg-
ative emotional responses. Overall, this pattern of data is consistent
with a model whereby amygdala responses to a negative stimulus
may reflect the need to regulate, whereas prefrontal responses may
reflect uninstructed recruitment of emotion regulation processes
and/or controlled processing of stimulus meaning. For example,
people who are unusually unreactive to aversive stimuli may show

lower amygdala activity, lower prefrontal activity, and less frequent
regulation choices.

Second, we found that expressing a distributed brain pattern
associated with implementing reappraisal was independently
predictive of choosing to regulate responses to particular stimuli
beyond activity estimates from the prefrontal regions alone. This
indicates that greater activity in prefrontal regions per se—and
expression of this distributed pattern—were independently pre-
dictive of choosing to regulate emotional responses to particular
events. In other words, emotion regulation choices were most
probable when participants showed high absolute levels of PFC
activity in addition to expressing this distributed pattern (char-
acterized by relatively more activity in prefrontal regions com-
pared with other parts of the brain).

Third, in a whole-brain analysis, we also observed brain– be-
havior correlations with emotion regulation choice frequencies
within two regions not of primary a priori interest, the precuneus
and anterior temporal lobe. Both of these regions have been
implicated in episodic memory retrieval and social cognition,
among other functions (Wagner et al., 2005; Bonner and Price,
2013; Doré et al., 2014). Future studies could test the role of these

Figure 6. Pattern expression analysis. A, Meta-analytically derived whole-brain pattern associated with regulating emotion via reappraisal (display is thresholded at z ' 2.6, k ! 20, but all
voxels were used in analyses). B, Trial-to-trial variability in expression of this pattern (z-transformed) is predictive of subsequently choosing to use reappraisal for particular images. C, Histogram of
all reappraisal choices (pink), and natural response choices (blue), from all participants.

Figure 7. Results of stimulus-level predictive models.A, Plot of regression coefficients (with SE and 95% CI) for the full model (model 4) predicting reappraisal choices from brain, self-reports of
affect, and normative ratings of the images (entered as simultaneous predictors). B, Model comparison metrics for full model (model 4) and reduced models with only ROIs, affect, and image norms
(model 3), affect and image norms (model 2), and image norms only (model 1). C, ROC curves depicting prediction accuracy for models 1, 2, 3, and 4 in terms of sensitivity (correct prediction of
reappraisal choices) and specificity (correct prediction of natural response choices) across a range of possible prediction thresholds.
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regions in regulation contexts by investigating whether precu-
neus and anterior temporal activity differ in predictive value for
choosing to implement emotion regulation strategies that differ
in demands on social cognition or long-term memory.

Finally, this study used a brain-as-predictor approach (Demos
et al., 2012; Berkman and Falk, 2013) to integrate neural models
of emotion regulation with emerging theories of cognitive con-
trol that distinguish between signaling the need for (or expected
value of) controlled processing (thought to be subserved by the
dorsal anterior cingulate and adjacent regions of dmPFC) versus
directly implementing this control (thought to be subserved by
lateral PFC) (Botvinick, 2007; Braver, 2012; Shenhav et al.,
2013). Critically, we show that activity in the amygdala, lateral
PFC, and dmPFC during an initial uninstructed encounter
with an evocative stimulus can predict later choices to regulate
when the choice to do so was presented explicitly. This sug-
gests that fMRI can detect variability in psychological and
neural processes—like affective reactivity, signaling a need for
top-down control, and engaging top-down control—that can
be used to predict subsequent emotion regulation behaviors.

Implications for clinical disorders involving
emotion dysregulation
A common observation in the clinical literature is that patients
with emotion-related clinical disorders do not show dramatic
behavioral deficits on laboratory tests of emotion regulation ca-
pacity (Joorman and Vanderlind, 2014). This suggests that core
mechanisms of clinical dysfunction may not be well indexed by
tasks that instruct participants directly how and when to regulate
emotion (Ochsner et al., 2012; Sheppes et al., 2015). Emotional
dysfunction could be caused by abnormalities in the following:
(1) the bottom-up generation of emotion, (2) the ability to use
top-down strategies for emotion regulation when instructed to,
and/or (3) the tendency to self-identify emotion regulation op-
portunities and self-initiate use of a regulation strategy (i.e.,
decisions to regulate or not, including selection of a context-
appropriate strategy). Although behavioral and brain correlates
of bottom-up generation and top-down control capacity (1 and
2) are typically assessed with existing laboratory tasks, tendencies
to make regulatory choices of particular kinds (3) typically are
not. Future work could investigate whether particular clinical
disorders are associated with disproportionate disruption in the
capacity to deploy processes for emotion regulation when in-
structed versus the tendency to use them without being in-
structed to do so (Doré et al., 2016). For example, patients with
depression, bipolar disorder, or social anxiety may show atypical
initial brain responses (i.e., in the image-viewing task), atypical
regulatory preferences (i.e., in the emotion regulation choice
task), or atypical relationships between patterns of brain activity
and subsequent regulation choices.

Limitations and future directions
In this study, we used fMRI measurements of brain responses at
one time point to predict behaviors observed in a relatively con-
trolled laboratory-based decision-making task at a later time
point. Future studies could extend these findings by attempting
to relate variability in brain responses to emotional behaviors in
everyday contexts in which people are typically not prompted to
enact regulation and are free to select any strategy they know
(Brans et al., 2013). In addition, we asked participants to view
negative images in the scanner when they were reacting to and/or
regulating responses in an uninstructed manner, but did not ask
them to indicate decisions to regulate until the subsequent choice

task. Future work could study all of these phases within the scan-
ner—separating reactivity, decision, and implementation phases
of choosing to regulate—to contrast the brain mechanisms of
explicit choices with those reflecting uninstructed recruitment of
brain processes predicting later choices identified here. Future
work could also investigate whether situational variables (e.g.,
how recently regulation strategies were acquired, trained, or
practiced) can affect whether regulation decisions are predicted
more by brain responses reflecting affective reactivity versus re-
cruitment of top-down control. Moreover, studies with large
sample sizes could investigate whether patterns of brain activity
can predict variability unique to novel images (i.e., above and
beyond what can be predicted from behavioral responses to pre-
viously seen images).

Finally, it is possible that brain mechanisms of regulation de-
cisions differ meaningfully across participant populations such as
older adults (Urry and Gross, 2010; Winecoff et al., 2011) or
children and adolescents (Martin and Ochsner, 2016). Regula-
tion decisions may also relate to subclinical variability in brain
structure variables, such as integrity of white matter tracts con-
necting brain systems associated with emotion and valuation
(Chavez and Heatherton, 2015) or psychological variables such as
the motivation to experience particular emotional states (Tamir
et al., 2015).

Conclusion
When faced with emotional challenges, what determines whether
we let our emotions unfold or attempt to rein them in? Here, we
suggest that, when confronted with distressing stimuli, greater
responses in brain regions associated with emotional reactivity
and cognitive control can be used to identify people who are more
likely to regulate their emotional responses and expression of a
brain pattern associated with cognitively regulating emotion can
be used to predict whether regulation is chosen for a given stim-
ulus. We hope that future work will build on the findings we
describe here to work toward a mechanistic and prospectively
predictive science of variable behavioral responses to distressing
life circumstances.
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